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Hydrodynamics of resonance oscillations of columns of inelastic particles

A. Goldshtein, A. Alexeev, and M. Shapiro
Laboratory of Transport Processes in Porous Materials, Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel

~Received 9 February 1999!

We study oscillations of a one-dimensional~1D! column of N slightly inelastic particles, produced by a
piston vibrating at one end of a closed tube. It is found that for large enough vibrational amplitudes of the
piston, the column oscillates periodically with the period equal to the vibrational period. The oscillation
patterns are governed by the shock waves propagating across the column. The averaged kinetic energy per
particle is shown to be proportional to the square of the vibrational frequency,v. This energy also strongly
depends on the vibrational amplitude. The maximal value of this kinetic energy achievable by these external
vibrations is found to be of orderv2L2, whereL is the total volume~length! of the tube free of particles. The
above results on the column resonance oscillations are also predicted by a 3D hydrodynamic model of an
inelastic granular gas.@S1063-651X~99!09506-9#

PACS number~s!: 83.70.Fn, 45.05.1x
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I. INTRODUCTION

Hydrodynamic models of inelastically colliding particle
has become a subject of growing research activity, motiva
by renewed interest in granular materials@1#. Experiments
show@2# that under the action of external vibrations granu
materials may flow like liquids; hence it is natural to u
hydrodynamic models for the description of such flows. T
fluidized ~gaslike! hydrodynamic granular state can b
achieved only if an external source, e.g., vibrations, provi
an energy input compensating the kinetic energy dissipa
due to particle inelastic collisions. Without such an ene
input the kinetic energy decays and, eventually, inelastic
lapse occurs@3#.

This paper is devoted to fluidization of layers of granu
materials by external vibrations. From the hydrodynam
point of view, kinetic energy can be transferred from a
brating plate to a granular material by ‘‘heat flux’’ and wa
propagation mechanisms. The heat flux mechanism@4# pre-
vails when the mean free pathl of the moving granules
exceeds the vibrational amplitudeA. The applicability of this
mechanism for vibrofluidization was verified for on
dimensional@5# and two-dimensional granular systems@6,7#.
Computer simulations@5,6# and experimental data@7#
showed that the hydrodynamic model of Haff@4# based on
this mechanism breaks down~because the majority of par
ticles forms a slowly moving cluster!, unless the system i
very dilute and consists of almost elastic granules@6#. Here
we discuss the wave mechanism, prevailing forA@l, and
show that it allows the fluidization of more dissipative gran
lar systems than does the heat flux mechanism.

Previous studies on the wavy motion of granular mater
were concerned with semi-infinite granular layers@8#, or sys-
tems affected by the gravity force@9#. The results of the
latter studies cannot be compared with those obtained
finite layers and without gravity@5–7#. We compare the two
fluidizing mechanisms acting in a granular gas agitated b
vibrating piston in the absence of gravitation. We start o
consideration from the formulation of the resonance prob
for granular gas.
PRE 591063-651X/99/59~6!/6967~10!/$15.00
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II. HYDRODYNAMIC MODEL

The resonance oscillations had been described for the
lecular ~conservative! gases@10#. Consider a gas moving
within a closed tube of lengthL as a result of harmonic
oscillations of one of its edge walls~piston!. The hydrody-
namic gas velocityu and the piston velocityẋp are given in
this case by

u~L,t !50, u„xp~ t !,t…5 ẋp~ t !, xp~ t !5A sin~2p f t !,
~1!

whereA and f are the oscillation amplitude and frequenc
respectively. Iff is far from a certain resonance frequency,f r
~see below!, the piston produces standing waves. Whenf is
close tof r , i.e., u12 f r / f u!1, the gas oscillations are ampl
fied and shock waves develop. They travel along the t
between the piston and the resting plug with a constant sp
of sounda0 related tof r by

f r5a0 /~2L !. ~2!

A space-time diagram for the first resonance is presen
in Fig. 1~a!. One can see that at any moment a single sh
wave prevails. This wave travels with a constant speed
either direction and strikes the plug and piston once per
brational period. Another resonance pattern may be obta
if we take the frequencyf twice as large as the resonan
frequencyf r @see Fig. 1~b!#. In this case two shock wave
prevail at any moment. Each of these waves interacts w
the plug and piston once per two vibrational periods.

The first and second resonance oscillations were exp
mentally registered and theoretically investigated@10# for the
case of small vibrational amplitudes only. In this case
distance between the plug and piston changes insignifica
during one period, any periodic shock wave travels the sa
way to and fro, and can interact with the piston not mo
than once per period. This is, obviously, no longer true if t
vibrational amplitude is of the order of the tube lengthL. For
large enough vibrational amplitudes the distance between
6967 ©1999 The American Physical Society
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6968 PRE 59A. GOLDSHTEIN, A. ALEXEEV, AND M. SHAPIRO
plug and piston, when the latter attains the in-stroke posit
can be small and additional interactions between the pis
and the shock wave may take place. A schematic of suc
pattern is depicted in Fig. 1~c!. By the analogy with the first
and second resonances, when a shock wave interacts w
piston, respectively, once per period and per two periods,
will call the pattern depicted in Fig. 1~c! the half resonance
pattern. Below, we show~see Fig. 3! that the same pattern
prevail also for a 1D discrete model of granular colum
when they are driven by periodic large-amplitude oscil
tions.

For typical laboratory conditions@10# the energy dissi-
pated due to the gas shear viscosity and heat conductio
small compared with the energy dissipated by the sh
waves. The problem of resonance oscillation of a conse
tive gas could thus be solved using the Euler inviscid hyd
dynamic equations by series expansion in terms of sm
parameterd5AA/L @10#. The solution shows that althoug
the gas velocity remains small@of order O(d)#, it is much
larger than the piston velocity@which is of orderO(d2)]; yet
both are much smaller than the speed of sound@which is of
orderO(1)#.

Here we generalize this solution to the case of resona
oscillations of a dilute granular gas consisting of smo
inelastic identical spheres of diameters and restitution coef-
ficient e,1. The Euler-type equations for this gas may
written in the form@11,12#

FIG. 1. Schematic of patterns of gas resonance oscillations
closed tube: wavy line, piston path; zigzag line, shock wave p
~a! First resonance~f 5 f r , A!L!, ~b! second resonance~f 52 f r ,
A!L!, ~c! half resonance~f 5 f r , A;L!.
n,
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] tr52]x~ru!, r~] tu1u]xu!52]xP,
~3!

] tP1u]xP1gP]xu52C0~e!s2r2E3/2,

where r is the particle number density,u is the hydrody-
namic velocity,E is the average energy of particle rando
motion, P5(g21)rE5ra2/g is the hydrostatic granula
pressure for the dilute granular gas,g5 5

3 , andC0 is given
by

C0~e!5~3p/8!1/2~12e2!. ~4!

Whene51, Eqs.~3! reduce to the classical Euler equatio
for an ideal gas. Withe,1, the sink term, appearing in th
energy balance equation, describes the kinetic energy los

The above problem~1! and~3! can be solved analytically
in a way similar to the solution of the classical gas proble
@10#, to obtain a time-periodic solution for the granular ga
Rather than doing this, here we only derive a resonance
cillation condition for the granular gas. Assuming the pa
ticle densityr and energyE to be close to their initial con-
stant valuesr0 and E0 @10#, respectively, one can expres
~up to the leading-order term! the energy dissipation rate pe
unit area of the tube via the sink term asC0(e)Ls2r0

2E0
3/2.

In the time-periodic regime these losses are balanced by
energy transmitted to the gas by the oscillating piston.
dilute particle systems, inelasticity affects neither conditio
at the shock front nor the speed of sound@12#. Thus, the
time-averaged power per unit area generated by the pi
may be taken from the solution for conservative gases in
form @10#

Ep52
1

T E
0

T

Pux5Ldt5
16

3Ag11
r0a0

3S A

L D 3/2

.

Equating the expressions for energy generation and diss
tion, we get the necessary condition for resonance osc
tions of a nonconservative granular gas:

d35~A/L !3/250.284~12e2!N, ~5!

whereN5Lr0s2 is the number of particles in the volum
Ls2. For e close to unity the right-hand side of Eq.~5! is
close to the parameterN(12e)/2 used in@5,13# as a charac-
teristic of the dissipative properties of granular systems. A
cording to Eq.~5! the total energy generation is of the ord
d3, which is consistent with the weak shock wave appro
mation ~see@10#! implicitly employed in the solution.

It should be noted that the resonance oscillations in
classical and inelastic gases have different physical orig
In the classical gas the resonance is due to the proximit
the piston’s frequency to the inherent system’s frequencyf r ,
determined by its temperature~speed of sound!. In contrast,

a
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PRE 59 6969HYDRODYNAMICS OF RESONANCE OSCILLATIONS OF . . .
in the granular gas the resonance oscillations occur whe
balance exists between the inelastic dissipation and pro
tion of granular kinetic energy due to the piston’s pow
which is equal to the shock wave production power@10#.

Condition ~5! implies that for a fixed energy dissipatio
the resonance occurs only for large enough amplitudesd pre-
dicted by Eq.~5!. Sinced,1, condition~5! predicts also the
maximal energy dissipation~which is formally obtained by
settingd51!. It is remarkable that in contrast to the conse
vative gases, the resonance condition for the granular ga
independent of the vibrational frequencyf and the initial ki-
netic energyE0 . It means thatf and L define a0 through
relation~2!. Therefore, any vibrational frequency will be th
resonance one, since any initial state with an arbitrary kin
energyEa will eventually evolve to the resonance state@14#,
where the dissipated and generated amounts of energy
balanced. In this state the speed of sound and the kin
energy in the system are given by

ar52L f , Er5ar
2/g~g21!. ~6!

III. COMPUTER SIMULATION

Equations~5! and ~6! are, strictly speaking, applicabl
whend!1, which implies that the energy dissipation para
eterD[N(12e)!1. However, we show that the resonan
oscillations may be generated for more dissipative gran
systems. To demonstrate this we present the results of c
puter simulations of the motion ofN sizeless inelastic par
ticles with identical masses constrained to move along a
between a harmonically oscillating piston and a resting pl
in accordance with boundary conditions~1!. The particles are
enumerated in the direction from the piston to the plug. T
boundaries collide with the first andNth particle in an elastic
manner.

We aim at comparing the results of simulations with t
predictions of the hydrodynamic model and the results
similar calculations of@5# performed for the heat flux energ
transfer mechanism. Towards this goal we used the c
sional models of hard@4# and soft@15# inelastic particles.

A. Hard-sphere model

We start our considerations with the hard-sphere co
sional model. The results of the simulations presented w
obtained by a driven-event method@5,6,16# and for the dis-
sipation parameterD<1. We consider two physical situa
tions where A is, respectively, less and larger thanl
5L/N, thereby distinguishing between these regimes
the corresponding energy transfer mechanisms.

In the initial state treated, the particles were uniform
distributed with velocities randomly chosen between2A2Ea

and A2Ea, whereEa@Er , given by Eqs.~6!. The average
kinetic energy per particle per second,Ē(t), was used to
characterize the system’s state. We found that after s
time this energy converges to a constant amountĒ` which
slightly depends onEa . Ē` was found to be proportiona
to f 2, in accordance with the dimensionality arguments@see
the discussion preceding Eq.~6!#. Hence, it is convenient to
scale all system’s parameters with the tube length and
a
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vibrational frequency, and to takeA as the only characteristic
of the boundary conditions.~Thus, the dimensionless tube
length and vibrational period are both equal to unity.! To
characterize the system’s ability to dissipate kinetic energy
we did simulations with variousN and 12e!1 for constant
D5N(12e), and did not find any significant difference in
Ē`. As such, any system’s state is uniquely characterized
terms of A and D @cf. condition ~5!#, i.e., Ē`5Ē`(A,D).
Figure 2 presentsĒ` versus the dimensionless vibrational
amplitude for severalD<1. Each curve has several global
and many local maxima. Our simulations show that the loca
maxima in Fig. 2 are caused by the effect of initial condi-
tions, whereas the global maxima are practically independe
of these conditions. In the present paper we focus on th
global maxima which are associated with different pattern
of the system motion~see below!, and leave investigation of
the local maxima for future contributions.

Figures 3~a!–3~c! present three examples of the particles’
trajectories during two vibrational periods, corresponding to
the three global maxima of the functionĒ`(A,0.6). When
A;0.2, five groups of particles~clusters! oscillate with pe-
riod T2 close to 2@Fig. 3~a!#. We will call this pattern, by the
analogy with pattern depicted in Fig. 1~b!, the second reso-
nance pattern~see below for a discussion of this notion!. One
of the clusters~close to the plug! moves with a small ampli-
tude, whereas four others oscillate with large amplitudes o
about1

2. Note that the center of mass of the column oscillate
almost periodically around an equilibrium positionxe;

3
4

with the amplitude much smaller than those of the four clus
ters. xe is governed by the number of slowly moving par-
ticles, which is much larger than the numberNm of rapidly
moving ones~see below Fig. 6!. Generally, the initial condi-
tions affect the number of clusters, but notT2 andNm .

Figure 3~b! shows two groups of particles corresponding
to the second maximum (A50.66), oscillating with period 1
but with different amplitudes. The center of mass oscillate
with a larger amplitude~about 1

2!. The fast moving cluster
hits the piston once per period. This is called here, by th
analogy with the pattern depicted in Fig. 1~a!, the first reso-
nance pattern.

FIG. 2. Kinetic energy vs vibrational amplitude forN5100.



n-
s
th
a

l-
F
fo
o

,
ar.

r-

ion

e
rit-

ts
1D
by

dy-
ow
an it
ation
ock
tted
ig.

ich
f the
of

the
is-
ac-
rgy.
rgy
ns
d.
oks

n,
in
-
are
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For A.0.86, particle clusters oscillate in a different ma
ner. Figure 3~c! shows a two-cluster pattern, which differ
from the first resonance pattern. The faster cluster hits
piston twice per period. We call this the half resonance p
tern by analogy with Fig. 1~c!.

DecreasingD leads to patterns with three, four, etc., co
lisions per period between the fast cluster and the piston.
D50.2, patterns with three and four collisions appear
A50.7 and 0.8, which values correspond to the maxima

FIG. 3. Trajectories of particles’ resonance oscillations~D
50.6,N5100!. Piston moves sinusoidally—A sin 2pt: ~a! second
resonance pattern (A50.2), ~b! first resonance pattern (A50.66),
and~c! half resonance pattern (A50.88); CM, position of center of
mass.
e
t-

or
r
f

Ē`(A,0.2) ~see Fig. 2!. With D increasing from 0.6 to 1.0
patterns with multiple cluster-plug collisions disappe
However, additional~with respect to the caseD50.6! global
maxima of Ē`(A,1.0) emerge, corresponding to the pa
ticles’ oscillations with periods 3~third resonance,A50.25!,
4 ~fourth resonance,A50.18!, etc. For all such maxima we
registered that the smaller the amplitudeA at the maximum,
the smallerNm and the larger the oscillation period.

It is noteworthy that the maximal kinetic energyĒ` that
can be pumped into the system by the vibrational excitat
only slightly depends on the energy dissipation~as expressed
by D! for small and moderateD. In Fig. 2 we find that
Ēm

`(0.2)'3.6 andĒm
`(0.6)'3.7. These values are both clos

to the prediction of the hydrodynamic model. Indeed, rew
ing Eq. ~6! in a dimensionless form~by settingf 51 andL
51! and settingg5 5

3 , for smooth inelastic spheres, one ge
Er;3.6. In spite of the difference between the simulated
granular system and the 3D granular gas model given
Eqs.~3!, the hydrodynamic estimation ofĒm

` agrees with the
DEM simulations.

This agreement between the computational and hydro
namic models may look like a coincidence. Below we sh
that the analogy between these models is much deeper th
might seem, and the processes of generation and dissip
of kinetic energy for both systems are governed by the sh
waves. In order to get insight into these processes, we plo
the current dimensionless kinetic energy versus time in F
4 for the first resonance conditions@see Fig. 3~b!#. One can
see that there are two very brief periods of time during wh
the energy changes dramatically. These rapid changes o
energy are associated with interactions of the first group
the particles with the piston and the second group of
particles, respectively. During the interactions with the p
ton the system gains kinetic energy and during the inter
tion between these two groups the system loses its ene
During the time between these interactions the ene
changes insignificantly. It means that interpartical collisio
occur during very small portions of the vibrational perio
Therefore, for the time scale chosen each interaction lo
like a jump of the kinetic energy.

In order to get insight into the piston-particle interactio
we depict velocity distributions versus particle number
Figs. 5~a!–5~c! for several moments of time within the pe
riod where the kinetic energy increases. These moments

FIG. 4. Kinetic energy vs time forA50.66,D50.6, N5100.
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expressed as a fraction of the period of contact between
particles and the piston. Figure 5~a! corresponds to a begin
ning of the contact. Particles may be subdivided into th
groups. The first group of the particles with numbers from
to 100 corresponds to the cluster slowly moving about
plug. The second group of particles with numbers from 15
73 moves towards the piston with velocities close to22.
Velocities of these particles are the same as they were
before the collision with the piston. The first and seco
groups of particles still ‘‘do not know’’ about the piston an
thus constitute an undisturbed part of the column. In t
undisturbed region the velocity dispersion is very small.

Particles with numbers from 1 to 14 form the third grou
There is a significant dispersion in velocities within th

FIG. 5. Velocity distribution within granular column forA
50.66, D50.6, N5100, and timest of piston-particle interac-
tion: ~a! t50.68, ~b! t50.77, and~c! t51.0. The timest are
given in the portion of the piston-column contact period which
the present regime is equal to 0.042 52 of the vibrational perio
he

e
4
e
o

st
d

s

.

group: some of the particles move in the positive directio
whereas others move in the negative direction. This disp
sion is apparently affected by the impact with the piston. T
third group constitutes the disturbed part of the column.

In Fig. 5~b! we see that at later times the disturbanc
propagate into the layer. The number of particles in the s
ond group is significantly increased due to the decreasin
the particle number in the third group. The disturbanc
propagate from ‘‘hot’’ ~large velocity dispersion! into
‘‘cold’’ gas ~small velocity dispersion!. In the hydrodynamic
terms the process described above may be called st
shock wave propagation@17#. The boundary between th
third and second groups may be identified with the sho
wave front.

Due to high particle density, the disturbances propag
very quickly and all particles forming the third and seco
group are gradually involved in the interparticle collisio
process. Numerous inelastic collisions lead to rapid diss
tion of the particle relative kinetic energy. As a result, af
some time particles of the third and the second groups
almost all their relative energy, and form a new group
particles moving with speeds of about 4, as seen in Fig. 5~c!.

It is worth mentioning that the velocity is distribute
monotonically within both groups of particles shown in Fi
5~c!. Due to such a distribution the particles avoid collisio
and, hence, energy losses. That is why the velocity distri
tion depicted in Fig. 5~c! remains unchanged until the inte
group collision occurs. This collision has many features
particle-piston collision. The energy of the translational p
ticle motion transforms, as a result of the shock wave pro
gation, into the energy of relative particle motion. This e
ergy is dissipated through the interparticle collisions. As
result, the total energy of the column rapidly changes fr
about 5.8 to 1.8~see Fig. 4!.

The dimensionless kinetic energyĒ` calculated forA
,0.1 andD.0.6 is small compared withĒm

` and indistin-

guishable in Fig. 2. In order to compareĒ` for different A

we normalizedĒ` by the maximal piston velocity, as in
@5,6#. This rescaled energy is found independent ofA for
0.6,D,1 and 0.01,A,0.1 and with a good accuracy ma
be approximated by 0.005/D. With this scaling the maxima
kinetic energy isẼm

`5Ēm
` /(2pAm)2, whereAm is the ampli-

tude corresponding to the maximal energy, i.e.,Ēm
`

5Ē`(Am ,D). Using concomitant values ofAm andĒm
` from

Fig. 2, one calculatesẼm
`50.078 and 0.19 forD50.2 and

0.6, respectively. These are much larger than the respec
values 0.003 and 0.0082, calculated from the approxima
0.005/D, apparently corresponding to the heat flux excitati
mechanism@5#.

We found that for the regimes whereĒm
`;0.005/D, Nm is

small ~one to three particles! and independent ofA, as was
also shown in@5#. When the dissipation parameterD de-
creases from 0.6 to 0.2, the range of amplitudes for wh
Ẽm

` is independent ofA diminishes. For example, forD
50.2 this range isA,0.01. Beyond this range an increase
Ẽm

` is accompanied by growth ofNm .
The applicability of the hydrodynamic description to

particulate system depends on the kinetic energy distribu



rg
-

h

s

e

i

e

i

y

d

a

,
a
la

t

e

e

of
f
ing

m-

nd
ing

he

the

d-

o-
ond

of
eri-

by
on
ffect

l-

real
ere

the

c-
-
.

less
e

ns
ults
or
e
to
l

ions
nds

6972 PRE 59A. GOLDSHTEIN, A. ALEXEEV, AND M. SHAPIRO
between the particles, rather than on the total kinetic ene
Ē`. In Fig. 6 the kinetic energy distribution for several am
plitudes is presented forD50.6. All curves are normalized
in such a way that the area below the curve is equal to 1. T
amplitudes chosen correspond to three maxima ofĒ` ~see
Fig. 2! related to three different patterns of the particle
motion ~see Fig. 3!, each characterized by its ownNm . The
maximal of these threeNm values, namelyNm575, is
achieved forA50.66 corresponding to the first resonanc
pattern. IncreasingA to 0.88~the half resonance pattern! re-
sults in decreasingNm to 51, though the energy distribution
between the rapidly and slowly moving particles changes
favor of the slow movers. The curve in Fig. 6 forA50.225
demonstrates that the second resonance pattern provid
larger number of fast particles (Nm555) than the half reso-
nance, notwithstanding that the vibrational amplitude
much larger in the half resonance pattern.

We calculated the numbersNm for other vibrational am-
plitudes and found that the maxima of the kinetic energ
Ē`, correlate with the maxima ofNm . Even a small increase
of A from any of the values listed in Fig. 3 is accompanie
by a dramatic decrease of bothĒ` ~see Fig. 2! andNm . For
example, a change fromA50.66 to 0.68 leads to a drop in
Nm from 75 to 5. Such sharp changes indicate the existen
of a resonance between the degrees of freedom associ
with different particles. Each of these degrees of freedom
characterized by its ownA-dependent frequency. Hence
variation of A can change these frequencies for some p
ticles, equalizing them, i.e., producing simultaneous oscil
tions of the particles’ groups. Using such an explanation, w
may call the patterns presented in Figs. 1~a!–1~c! resonance
oscillations ofNm555, 75, and 51 particles, respectively, ou
of the total of 100 particles.

B. Soft-sphere model

The hard-sphere model is mathematically the simple
one. For real materials, however, the restitution coefficient
not constant. Rather, it increases monotonically with d
creasing relative velocity of colliding particles@18#. This col-
lisional property, apparently disregarded by the hard-sph

FIG. 6. Kinetic energy distribution forD50.6, N5100.
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model, can lead to significant differences in the results
simulations @19,20#. Below we reexamine the problem o
resonance oscillations of a column of inelastic particles us
a more physically accurate collisional model@15#. According
to this model, during interparticle contact the particle co
pression distancej i5Ri1Ri 112uxi2xi 11u is governed by
the equation

j̈ i1r@j̇ i
3/21 3

2 Adj̇ iAj i #50, ~7!

wherei 51,2, . . . ,100,

r5
2YAReff

3meff~12n2!
, meff5

mimi 11

mi1mi 11
, Reff5

RiRi 11

Ri1Ri 11
.

~8!

Here Y is the Young modulus,n is the Poisson ratio of the
particle material,Ad is a material constant dependent onY, n,
and the material effective bulk viscosity constantm governs
energy losses through collisions. Particle-particle a
particle-wall collision are, respectively, described by sett
in Eq. ~8! meff5m/2, Reff5R/2 andmeff5m, Reff5R, wherem
and R are the particle mass and radius, respectively. T
parameterAd , appearing in Eq.~7!, accounts for the energy
losses during the collision, and, hence, it is related to
effective restitution coefficienteeff . For a fixedAd , this res-
titution coefficient depends on the relative velocity of colli
ing particles.

Using the above collisional model, the equations of m
tion of the system may be described by the Newton sec
and third laws. These may be expressed by the system
N5100 second-order differential equations. For the num
cal simulations presented below, we solved this system
the fourth-degree Runge-Kutta numerical integrati
scheme. The time step was chosen small enough to not a
the results of the simulations.

Simulations were performed for the following fixed va
ues of the parameters:m50.057 kg, R50.005 m, n
50.35, andY59.831010N/m2. These values of the Young
modulus and the Poisson ratio correspond to the
material—brass. In order to mimic results of the hard-sph
simulations, the following values ofAd were used: Ad
310851.04, 3.14, and 5.25. These values correspond to
effective restitution coefficientseeff50.99, 0.994, and 0.998
calculated for the two particles colliding with relative velo
ity equal toA2Er'2.68. HereEr is the dimensionless reso
nance energy@see Eq.~6!# calculated for the first resonance

The hard-sphere simulations were performed for size
particles which apparently do not occupy any volum
~length! within the 1D tube. For the soft-sphere simulatio
particles have a certain size. In order to compare the res
of the simulations obtained by both collisional models, f
the soft collisional model simulations the total volum
~length! free from the particles within the tube was taken
be equal to the tube length,L, for the hard-sphere collisiona
model simulations.

For the parameters chosen we repeated all simulat
performed for the hard-sphere model and observed the tre



e

br

i-
l

es
E
F
i

fi

d

ffi-
ob-
tter
in-
e

ol-
ra-
ut
ig.

The
d by
i-
ke

s

.
ts

t
he
cles
ched

ck
col-

of

PRE 59 6973HYDRODYNAMICS OF RESONANCE OSCILLATIONS OF . . .
reported above. In particular, we found that the tim
averaged kinetic energy approaches a constant valueĒ`

which depends on the two dimensionless parameters: vi
tional amplitude A and dissipative parameterD5N(1
2eeff). In Fig. 7, Ē` is shown versus the dimensionless v
brational amplitude for severalD<1. Each curve has severa
global maxima. As for the hard-sphere model, each of th
global maxima is associated with a resonance pattern.
amples of these resonance patterns are presented in
8~a!–8~d!. Comparing these patterns with those depicted
Fig. 3, one can see that they may be classified as the
@Figs. 8~a! and 8~b!# and half@Figs. 8~c! and 8~d!# resonance
patterns. The second resonance pattern was not observe
the soft-sphere model simulations.

FIG. 7. Kinetic energy vs vibrational amplitude for a column
N5100 softly colliding granules.
-

a-

e
x-
igs.
n
rst

for

The nature of the velocity-dependent restitution coe
cient manifests itself in the disappearance of the clusters
served for the hard-sphere model. In contrast to the la
model, now trajectories of each particle are well dist
guished. They fill practically all the phase volume in th
planex-t. The period of contact between the piston and c
umn significantly increases, and reaches half of the vib
tional period. In order to get qualitative information abo
the processes occurring within the column, we plotted in F
9 the kinetic energy evolution@Fig. 9~a!# and the particles’
and piston’s trajectories@Fig. 9~b!#, respectively, during one
vibrational period. One can distinguish in Figs. 9~a! and 9~b!
several characteristic stages of the system evolution.
moments of time separating these stages are denote
a,b,c. At the momenta the kinetic energy reaches its min
mum @see Fig. 9~a!# and the piston approaches its outstro
position @see Fig. 9~b!#. At the momentb the column de-
taches from the piston@see Fig. 9~b!# and the energy reache
its maximum@see Fig. 9~a!#. At the momentc the column
again touches the piston moving to the outstroke position

Velocity distributions within the column for the momen
a,b,care depicted in Figs. 10~a!–10~c!, respectively. One can
distinguish in Fig. 10~a! a shock wave pattern. About 20 firs
particles are involved in intensive relative motion by t
shock wave generated by the piston. The rest of the parti
are less agitated because the wave front has not yet rea
them. During the stage, between the momentsa and b, the
piston, moving in the positive direction, pushes the sho
wave towards the plug. This shock wave compresses the
umn of particles and increases their energy from 1.5 to 7@see
Fig. 9~a!#. We see in Fig. 10~b! that the whole layer is in-
FIG. 8. Patterns of particles’ resonance oscillations~soft collisional model,D50.6,N5100!. Piston moves sinusoidally—A sin 2pt: ~a!
A50.24, ~b! A50.4, ~c! A50.55, and~d! A50.7. ~a! and ~b! First resonance pattern;~c! and ~d! half resonance pattern.
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volved in the intensive relative~thermal! motion at the end
of this stage. All particles move in the positive directio
except the last particle, which is reflected from the plu
There is a significant dispersion in velocities between
particles, i.e., they are all fluidized.

During the detachment period lasting until the momenc,
the particles rapidly lose their energy@see Fig. 9~a!#. It is
explained by the absence of interaction with the pist
which does not supply energy to the column. The ene
losses are caused by a vast number of inelastic collis
stipulated by significant dispersion of the particles’ velo
ties. These collisions are accompanied by rather complic
wavy processes. Any detailed description of these proce
is far beyond the scope of the present paper and may
subject of a separate investigation. It is worth mention
that this stage terminates when an expansion wave is form
An example of this wave is presented in Fig. 10~c!. The total
momentum of the column is negative~most of the particles
move towards the piston!, though the relative particle veloci
ties are still significant. A part of the kinetic energy of th
relative particle motion is lost through inelastic collision
The remaining part is distributed between the particles
such a way that a velocity gradient is created. Such a gr
ent may be seen in Fig. 10~c! within the part of the column
counting about the first 80 particles. Comparing the veloc
distributions of the last 80 particles presented in Figs. 10~a!
and 10~c!, we see that the intensive particle thermal moti
terminates and the velocity distribution transforms into
almost monotonic one during the time period (0,a). Due to

FIG. 9. Evolution of a column consisting ofN5100 inelasti-
cally colliding ~soft collisional model! granules during one vibra
tional period forA50.66,D50.6. ~a! Kinetic energy vs time, and
~b! particles and piston trajectories.
.
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such velocity distribution, caused by the expansion wave, t
column expands. After that, a new shock wave compress
the column and the process repeats again.

The results presented above of our computer simulatio
of vibrated inelastic granular columns, performed for bot
collisional models, have many common features, as follow

~i! For large enough vibrational amplitudes of the pisto
the columns oscillate periodically with a period equal to th
vibrational period.

~ii ! The maximal value of the kinetic energy of thes
granular systems driven by the external vibrations is propo
tional to the square of the vibrational frequency,v, and
strongly depends on the vibrational amplitude in a nonmon
tonic manner. The maximal values of the kinetic energ
achievable by means of external vibrations, are of the ord
of v2L2, whereL is the total volume of the space within the
tube free of particles.

FIG. 10. Particle velocity distribution within the column shown
in the Fig. 9: ~a! t5a, ~b! t5b, and~c! t5c.
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~iii ! The periodic oscillations of the granular columns co
responding to the maximal values of the kinetic energy
governed by the shock waves. All the features~i!–~iii ! listed
above were shown in Sec. II to prevail for resonance os
lations also of three-dimensional granular gases, as pred
by the hydrodynamic model of the granular gas~1! and ~2!.
Moreover, prediction of the maximal value of the kinet
energy~6! calculated on the basis of the developed hydro
namic model is in good agreement with the computer sim
lation results for the hard-sphere model.

We also registered a number of differences in the res
of soft- and hard-sphere model simulations. In particular,
riods of piston-particle interactions for ‘‘soft’’ particles ar
considerably larger than those for ‘‘hard’’ ones. Another im
portant difference between these collisional models is in
energy distribution between the particles. In Fig. 11 the
netic energy distribution for several amplitudes is presen
for D50.6. All curves are normalized in such a way that t
area below the curve is equal to 1. The amplitudes cho
correspond to four maxima ofĒ` for D50.6 ~see Fig. 7!
related to the two different patterns of particle moti
„namely, first resonance@Figs. 8~a! and 8~b!# and half reso-
nance@Figs. 8~c! and 8~d!#…. Comparing velocity distribu-
tions obtained for the soft-~Fig. 11! and hard-~Fig. 6! sphere

FIG. 11. Kinetic energy distribution forD50.6, N5100.
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collisional models, one can see that the jumps of the ene
between two groups of particles, registered for the ha
sphere model, do not exist for the soft collisional model.
that sense the energy distribution of the vibrated 1D gran
columns calculated for the soft collisional model match
closer to the comparable property of the resonance osc
tions of the granular gases based on the continuum appr
than do the results for the hard-sphere model. On the o
hand, we have seen above that the maximal value of
kinetic energy predicted by the hydrodynamic mod
matches closer to the results of the hard-sphere model s
lations.

These resonance oscillations of our 1D system have
eral common features with those described by the hydro
namic model, discussed above. A more detailed compar
between the models and the simulations is hardly poss
because of the following two reasons. The hydrodynam
model is restricted by the requirement of the smallness of
vibrational amplitude. Therefore, significant errors may ar
in the description of the column oscillations under the act
of large amplitude external excitations considered in our
simulations. In particular, the hydrodynamic model fails
treat the half resonance pattern corresponding to mult
reflections of the shock wave from the walls, when the d
tance separating them becomes small enough. The se
reason is the physical difference between a 1D system
2D and 3D systems. It is known@21# that even the 1D col-
umn of elastically colliding spheres oscillates in a mann
different from that of the comparable 3D conservative g
We hope that future comparison of CFD simulations with 2
and 3D physical and computational experiments will allo
us to assess the applicability of these and similar hydro
namic models to vibrated granular systems.
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