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Hydrodynamics of resonance oscillations of columns of inelastic particles

A. Goldshtein, A. Alexeev, and M. Shapiro
Laboratory of Transport Processes in Porous Materials, Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel
(Received 9 February 1999

We study oscillations of a one-dimensiofdD) column of N slightly inelastic particles, produced by a
piston vibrating at one end of a closed tube. It is found that for large enough vibrational amplitudes of the
piston, the column oscillates periodically with the period equal to the vibrational period. The oscillation
patterns are governed by the shock waves propagating across the column. The averaged kinetic energy per
particle is shown to be proportional to the square of the vibrational frequencyhis energy also strongly
depends on the vibrational amplitude. The maximal value of this kinetic energy achievable by these external
vibrations is found to be of ordes?L?, whereL is the total volumelength of the tube free of particles. The
above results on the column resonance oscillations are also predicted by a 3D hydrodynamic model of an
inelastic granular ga$S1063-651X99)09506-9

PACS numbd(s): 83.70.Fn, 45.05tx

I. INTRODUCTION II. HYDRODYNAMIC MODEL

. . . - . The resonance oscillations had been described for the mo-

Hydrodynamic models of inelastically colliding particles lecular (conservative gases[10]. Consider a gas moving
has becomegsubjec? of growing research activity,_ motivategfithin a closed tube of length as a result of harmonic
by renewed interest in granular materigld. Experiments  oqijiations of one of its edge wallgiston. The hydrody-
show[2] that under the action of external vibrations granular,;mic gas velocity and the piston velocitg, are given in
materials may flow like liquids; hence it is natural to usepis case by
hydrodynamic models for the description of such flows. The
fluidized (gaslike hydrodynamic granular state can be
achieved only if an external source, e.g., vibrations, provides u(L,t)=0, uXp(1),t)=X,(t), Xp(t)=Asin(2wft),
an energy input compensating the kinetic energy dissipation (R}
due to particle inelastic collisions. Without such an energy

input the kinetic energy decays and, eventually, inelastic colhereA andf are the oscillation amplitude and frequency,
lapse occur$3]. respectively. Iff is far from a certain resonance frequenty,

This paper is devoted to fluidization of layers of granular(S€€ Pelow the piston produces standing waves. Wiés

materials by external vibrations. From the hydrodynamic](f,log'e tc::}‘r,hi.e.‘,(|1—fr/f|j1, Ithe g?ﬁ osciIIati(IJnsl are ahmpli—b
point of view, kinetic energy can be transferred from a vi- 'led and shock waves develop. They travel along the tube

brating plate to a granular material by “heat flux” and wave between the piston and the resting plug with a constant speed

propagation mechanisms. The heat flux mecharnéhpre- of sounda related tof, by
vails when the mean free path of the moving granules

exceeds the vibrational amplituée The applicability of this f.=ag/(2L) )
mechanism for vibrofluidization was verified for one- oo '
dimensiona(5] and two-dimensional granular systef@s7. A space-time diagram for the first resonance is presented

Computer simulations[5,6] and experimental datd7] in Fig. 1(a). One can see that at any moment a single shock
showed that the hydrodynamic model of H@#f| based on  wave prevails. This wave travels with a constant speed in
this mechanism breaks dowbecause the majority of par- either direction and strikes the plug and piston once per vi-
ticles forms a slowly moving clustgrunless the system is brational period. Another resonance pattern may be obtained
very dilute and consists of almost elastic grandygls Here  if we take the frequency twice as large as the resonance
we discuss the wave mechanism, prevailing As¢\, and frequencyf, [see Fig. 1b)]. In this case two shock waves
show that it allows the fluidization of more dissipative granu-prevail at any moment. Each of these waves interacts with
lar systems than does the heat flux mechanism. the plug and piston once per two vibrational periods.
Previous studies on the wavy motion of granular materials The first and second resonance oscillations were experi-
were concerned with semi-infinite granular layg8§ or sys-  mentally registered and theoretically investigated] for the
tems affected by the gravity ford®]. The results of the case of small vibrational amplitudes only. In this case the
latter studies cannot be compared with those obtained fadistance between the plug and piston changes insignificantly
finite layers and without gravit}5—7]. We compare the two during one period, any periodic shock wave travels the same
fluidizing mechanisms acting in a granular gas agitated by avay to and fro, and can interact with the piston not more
vibrating piston in the absence of gravitation. We start outhan once per period. This is, obviously, no longer true if the
consideration from the formulation of the resonance problenvibrational amplitude is of the order of the tube lengthH-or
for granular gas. large enough vibrational amplitudes the distance between the
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dp=—dx(pu), p(dUutudu)=—3d,P,

()

P+ udP+ yPau=—Cy(e)o?p?E3?

where p is the particle number density, is the hydrody-
namic velocity,E is the average energy of particle random
motion, P=(y—1)pE=pa?/y is the hydrostatic granular
pressure for the dilute granular gag= 3, andC, is given

v by
_ _L _ _I/2f__ ](f'_ _ 3/2f_ __2//;_ _5/21 _
Co(e)=(37/8)V(1—e?). 4
¢ \V/ZRA\V/ARANYAR\VARNVAN\V Whene=1, Egs.(3) reduce to the classical Euler equations
for an ideal gas. Witke<<1, the sink term, appearing in the
(b) energy balance equation, describes the kinetic energy losses.

The above problenil) and(3) can be solved analytically
in a way similar to the solution of the classical gas problem
[10], to obtain a time-periodic solution for the granular gas.
Rather than doing this, here we only derive a resonance os-
cillation condition for the granular gas. Assuming the par-
ticle densityp and energyE to be close to their initial con-
stant valuespy and E, [10], respectively, one can express
(up to the leading-order temthe energy dissipation rate per
unit area of the tube via the sink term @g(e)L o?p2E3">.
In the time-periodic regime these losses are balanced by the
energy transmitted to the gas by the oscillating piston. For
dilute particle systems, inelasticity affects neither conditions

FIG. 1. Schematic of patterns of gas resonance oscillations in at the shock front nor the speed of sourd®]. Thus, the
closed tube: wavy line, piston path; zigzag line, shock wave pathtime-averaged power per unit area generated by the piston

(a) First resonancéf=f,, A<L), (b) second resonandé=2f,,  may be taken from the solution for conservative gases in the
A<L), (c) half resonancéf="f,, A~L). form [10]

plug and piston, when the latter attains the in-stroke position,
can be small and additional interactions between the piston

and the shock wave may take place. A schematic of such a £ _ 1 TP di= 16 3o A 312
pattern is depicted in Fig.(¢). By the analogy with the first T ), U= 01= 3mpoao L

and second resonances, when a shock wave interacts with a
piston, respectively, once per period and per two periods, we

will call the pattern depicted in Fig.(&) the half resonance Equating the expressions for energy generation and dissipa-

S?etsaarirll.a?seolo;/(\)l,r V;elsg%\fggeet';'gmgdtgfghger;gm; pcagltﬁrr:r?s tion, we get the necessary condition for resonance oscilla-
when they are driven by periodic large-amplitude oscilla—tlons of a nonconservative granular gas:
tions.

For typical laboratory condition§l0] the energy dissi-
pated due to the gas shear viscosity and heat conduction is
small compared with the energy dissipated by the shock
waves. The problem of resonance oscillation of a conserva- 2. , ,
tive gas could thus be solved using the Euler inviscid hydroWhgreN: Lpoo® is the number of particles in the volume
dynamic equations by series expansion in terms of smalto”- For e close to unity the right-hand side of E(p) is
parameters=A/L [10]. The solution shows that although Close to the paramet&¥(1—e)/2 used in[5,13) as a charac-
the gas velocity remains smdbf order O(8)], it is much terlsqc of the dissipative properties of gra.nula_lr systems. Ac-
larger than the piston velocifyvhich is of orderO(5?)]; yet ~ cording to Eq.(5) the total energy generation is of the order
both are much smaller than the speed of sowich is of 5%, which is consistent with the weak shock wave approxi-
orderO(1)]. mation (see[10]) implicitly employed in the solution.

Here we generalize this solution to the case of resonance It should be noted that the resonance oscillations in the
oscillations of a dilute granular gas consisting of smoothclassical and inelastic gases have different physical origins.
inelastic identical spheres of diameteand restitution coef- In the classical gas the resonance is due to the proximity of
ficient e<1. The Euler-type equations for this gas may bethe piston’s frequency to the inherent system'’s frequdngy
written in the form[11,12 determined by its temperatutepeed of sound In contrast,

5%=(A/L)%?=0.2841—¢€?)N, (5)
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in the granular gas the resonance oscillations occur when *

balance exists between the inelastic dissipation and produ 0 D=1.0

tion of granular kinetic energy due to the piston’s power, 4 D06

which is equal to the shock wave production poywEd]. N
Condition (5) implies that for a fixed energy dissipation

the resonance occurs only for large enough amplitdjae-

dicted by Eq(5). Sinces<1, condition(5) predicts also the
maximal energy dissipatiofwhich is formally obtained by -2}
settings=1). It is remarkable that in contrast to the conser-
vative gases, the resonance condition for the granular gas
independent of the vibrational frequentgnd the initial ki-
netic energyE,. It means thaf and L definea, through
relation(2). Therefore, any vibrational frequency will be the
resonance one, since any initial state with an arbitrary kineti
energyE, will eventually evolve to the resonance staid], o om0
where the dissipated and generated amounts of energy a ° ®' °2 03 04
balanced. In this state the speed of sound and the kinetic

energy in the system are given by

FIG. 2. Kinetic energy vs vibrational amplitude fisr=100.
_ 42 _
a=2Lf, E=ai/y(y=1). ©) vibrational frequency, and to talkkeas the only characteristic
of the boundary conditiongThus, the dimensionless tube
ll. COMPUTER SIMULATION length and vibrational period are both equal to unifjo

. . : . characterize the system’s ability to dissipate kinetic energy,
Equations(5) and (6) are, strictly speaking, applicable we did simulations with varioubl and 1—e<1 for constant

when §<1, which implies that the energy dissipation param-_~ - . : s . i
eterD=N(1-e)<1. However, we show that the resonanceE_N(1 €), and did not find any significant difference in

oscillations may be generated for more dissipative granulaf - AS such, any system's state is uniquely characterized in
systems. To demonstrate this we present the results of corterms of A and D [cf. condition (5)], i.e., E°=E*(A,D).
puter simulations of the motion d¥l sizeless inelastic par- Figure 2 present€” versus the dimensionless vibrational
ticles with identical masses constrained to move along a Iingmpmude for severaD<1. Each curve has several global
between a harmonically oscillating piston and a resting plugand many local maxima. Our simulations show that the local
in accordance with boundary conditiofl3. The particles are  maxima in Fig. 2 are caused by the effect of initial condi-
enumerated in the direction from the piston to the plug. Thaions, whereas the global maxima are practically independent
boundaries collide with the first aridth particle in an elastic  of these conditions. In the present paper we focus on the
manner. global maxima which are associated with different patterns
We aim at comparing the results of simulations with theof the system motiottsee below, and leave investigation of
predictions of the hydrodynamic model and the results ofthe local maxima for future contributions.
similar calculations of5] performed for the heat flux energy  Figures 3a)—3(c) present three examples of the particles’
transfer mechanism. Towards this goal we used the collitrajectories during two vibrational periods, corresponding to

sional models of har{4] and soft[15] inelastic particles. the three global maxima of the functid®(A,0.6). When
A~0.2, five groups of particle&lusters oscillate with pe-
A. Hard-sphere model riod T, close to ZFig. 3(a@)]. We will call this pattern, by the

We start our considerations with the hard-sphere colli-2nalogy with pattern depicted in Fig(H), the second reso-
sional model. The results of the simulations presented werBance patterfsee below for a discussion of this nojo®ne
obtained by a driven-event meth$8,6,16 and for the dis- of the clustergclose to the plugmoves with a small ampli-

sipation parameteD<1. We consider two physical situa- tude, whereas four others oscillate with large amplitudes of
tions where A is, respectively, less and larger than about3. Note that the center of mass of the column oscillates

—L/N, thereby distinguishing between these regimes an@most periodically around an equilibrium positiog~3
the corresponding energy transfer mechanisms. with the amplitude much smaller than those of the four clus-

In the initial state treated, the particles were uniformly€rS- Xe is governed by the number of slowly moving par-
distributed with velocities randomly chosen betweeg2E,  ticles, which is much larger than the numbéy, of rapidly
and /—2an whereE,>E, , given by Eqs(6). The average moving onegsee below Fig. 6 Generally, the initial condi-

- . tions affect the number of clusters, but andN,,.
kinetic energy per particle per second(t), was used to ot m

: Figure 3b) shows two gro of particles correspondin
characterize the system’s state. We found that after somg thlgusecgn()j ?nari/rsr’]urm(golégi os%il[;tingswit;rpZ?iod i g

time this energy converges to a constant amdtfhtwhich  pyt with different amplitudes. The center of mass oscillates
slightly depends orE,. E” was found to be proportional with a larger amplitudgabout3). The fast moving cluster
to f2, in accordance with the dimensionality argumedsise  hits the piston once per period. This is called here, by the
the discussion preceding E@)]. Hence, it is convenient to analogy with the pattern depicted in Figal, the first reso-
scale all system’s parameters with the tube length and theance pattern.
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FIG. 3. Trajectories of particles’ resonance oscillatiofis
=0.6,N=100). Piston moves sinusoidallyA-ssin 2#t: (a) second
resonance pattermA=0.2), (b) first resonance patterrA& 0.66),
and(c) half resonance patteri\& 0.88); CM, position of center of
mass.

Kinetic energy
IS

i+ L

FIG. 4. Kinetic energy vs time foA=0.66,D=0.6, N=100.

E”(A,0.2) (see Fig. 2 With D increasing from 0.6 to 1.0,

patterns with multiple cluster-plug collisions disappear.
However, additiona{with respect to the cade=0.6) global

maxima of E*(A,1.0) emerge, corresponding to the par-
ticles’ oscillations with periods &hird resonanceA=0.25),

4 (fourth resonancefA=0.18), etc. For all such maxima we
registered that the smaller the amplitulat the maximum,
the smalleN,, and the larger the oscillation period.

It is noteworthy that the maximal kinetic ener@y that
can be pumped into the system by the vibrational excitation
only slightly depends on the energy dissipatias expressed
by D) for small and moderat®. In Fig. 2 we find that

E;(0.2)~3.6 andE,(0.6)~3.7. These values are both close
to the prediction of the hydrodynamic model. Indeed, rewrit-
ing Eqg. (6) in a dimensionless fornby settingf =1 andL

=1) and settingy= 3, for smooth inelastic spheres, one gets
E,~3.6. In spite of the difference between the simulated 1D
granular system and the 3D granular gas model given by

Egs.(3), the hydrodynamic estimation &, agrees with the
DEM simulations.

This agreement between the computational and hydrody-
namic models may look like a coincidence. Below we show
that the analogy between these models is much deeper than it
might seem, and the processes of generation and dissipation
of kinetic energy for both systems are governed by the shock
waves. In order to get insight into these processes, we plotted
the current dimensionless kinetic energy versus time in Fig.
4 for the first resonance conditiofisee Fig. 8)]. One can
see that there are two very brief periods of time during which
the energy changes dramatically. These rapid changes of the
energy are associated with interactions of the first group of
the particles with the piston and the second group of the
particles, respectively. During the interactions with the pis-
ton the system gains kinetic energy and during the interac-
tion between these two groups the system loses its energy.

For A>0.86, particle clusters oscillate in a different man- During the time between these interactions the energy
ner. Figure &) shows a two-cluster pattern, which differs changes insignificantly. It means that interpartical collisions
from the first resonance pattern. The faster cluster hits theccur during very small portions of the vibrational period.
piston twice per period. We call this the half resonance patTherefore, for the time scale chosen each interaction looks

tern by analogy with Fig. ).

Decreasing leads to patterns with three, four, etc., col-

like a jump of the kinetic energy.
In order to get insight into the piston-particle interaction,

lisions per period between the fast cluster and the piston. Fake depict velocity distributions versus particle number in
D=0.2, patterns with three and four collisions appear forFigs. §a)—5(c) for several moments of time within the pe-
A=0.7 and 0.8, which values correspond to the maxima ofiod where the kinetic energy increases. These moments are
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¢ group: some of the particles move in the positive direction,
iulm whereas others move in the negative direction. This disper-

W sion is apparently affected by the impact with the piston. The

third group constitutes the disturbed part of the column.

In Fig. 5b) we see that at later times the disturbances
propagate into the layer. The number of particles in the sec-
ond group is significantly increased due to the decreasing of
° the particle number in the third group. The disturbances
ar propagate from “hot” (large velocity dispersion into

“cold” gas (small velocity dispersion In the hydrodynamic
terms the process described above may be called strong
@ S shock wave propagatiofil7]. The boundary between the

third and second groups may be identified with the shock

5 wave front.

Due to high particle density, the disturbances propagate
very quickly and all particles forming the third and second
group are gradually involved in the interparticle collision
process. Numerous inelastic collisions lead to rapid dissipa-
tion of the particle relative kinetic energy. As a result, after
some time particles of the third and the second groups lose
¢ almost all their relative energy, and form a new group of
N particles moving with speeds of about 4, as seen in Fig). 5

It is worth mentioning that the velocity is distributed
monotonically within both groups of particles shown in Fig.

: : 5(c). Due to such a distribution the particles avoid collisions
(b} Partlenumber and, hence, energy losses. That is why the velocity distribu-
tion depicted in Fig. &) remains unchanged until the inter-
group collision occurs. This collision has many features of
particle-piston collision. The energy of the translational par-
ticle motion transforms, as a result of the shock wave propa-
gation, into the energy of relative particle motion. This en-
ergy is dissipated through the interparticle collisions. As a
> result, the total energy of the column rapidly changes from
about 5.8 to 1.8see Fig. 4.

' The dimensionless kinetic energ?” calculated forA
<0.1 andD>0.6 is small compared witE>, and indistin-
guishable in Fig. 2. In order to compaﬁé’a for different A

: we normalizedE” by the maximal piston velocity, as in

(c) - [5,6]. This rescaled energy is found independentAofor
. < . <0. [
FIG. 5. Velocity distribution within granular column fofA 0.6<D <1 and 0.0::A=0.1 and with a good accuracy may

=0.66, D=0.6, N=100, and timesr of piston-particle interac- be approximated by 0.003/ With this scaling the maximal

tion: (a) 7=0.68, (b) 7=0.77, and(c) r=1.0. The timesr are _Kinetic energy i€y, =E/(2mAy,)?, whereA, is the ampli-
given in the portion of the piston-column contact period which intude corresponding to the maximal energy, i.€&,
the present regime is equal to 0.042 52 of the vibrational period. _ E*(A,,,D). Using concomitant values &, and E; from

. _ Fig. 2, one calculate&;,=0.078 and 0.19 foD=0.2 and
expressed as a fraction of the period of contact between thg g, respectively. These are much larger than the respective
particles and the piston. Figuréab corresponds to a begin- yajues 0.003 and 0.0082, calculated from the approximation
ning of the contact. Particles may be subdivided into threg) go5p, apparently corresponding to the heat flux excitation
groups. The first group of the particles with numbers from 74y6chanisni5].

to 100 corresponds to the cluster slowly moving about the We found that for the regimes whe@]~0.005D, N, is

lug. The second group of particles with numbers from 15 to . .
?3 gmoves towardg ther; pis?on with velocities close-t@. small (one to three particlgsand independent o, as was

o . . atlso shown in[5]. When the dissipation parametBr de-
Velocities of these particles are the same as they were JUSt ~ces from 0.6 to 0.2. the range of amplitudes for which
before the collision with the piston. The first and second’ =~ ) e
groups of particles still “do not know” about the piston and Em 1S independent ofA diminishes. For example, fob
thus constitute an undisturbed part of the column. In this=0-2 this range i#\<0.01. Beyond this range an increase of
undisturbed region the velocity dispersion is very small.  E;, is accompanied by growth dd,,.

Particles with numbers from 1 to 14 form the third group. The applicability of the hydrodynamic description to a

There is a significant dispersion in velocities within this particulate system depends on the kinetic energy distribution

Velocity

R—
]

S

]

_
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8

model, can lead to significant differences in the results of
simulations[19,20. Below we reexamine the problem of
resonance oscillations of a column of inelastic particles using

w a more physically accurate collisional modl&b]. According
9 l—ﬁ‘ froin to this model, during interparticle contact the particle com-
—— i _ lel, g p : p
. ? \ pression distancé;=R;+ R;;1—|Xi—X; 41| iS governed by
: E the equation

o A=0.88
5 A=0.66
o A=0.2

éi+P[:§?/2+ $AGEVE]=0, (7)

wherei=1,2, ... 100,

Particle number _ 2Y \} Re eff mI mI +1 eff I:2I R| +1
P~ 3m(1—27) m+mig’ R+Rii1
8

FIG. 6. Kinetic energy distribution fob =0.6, N=100.

. o HereY is the Young modulusy is the Poisson ratio of the

b_etween the particles, rather than on the total kinetic energ%article materialA, is a material constant dependentr,
E™. In Fig. 6 the kinetic energy distribution for several am- and the material effective bulk viscosity constangoverns
plitudes is presented fdd=0.6. All curves are normalized energy losses through collisions. Particle-particle and
in such a way that the area below the curve is equal to 1. Thgarticle-wall collision are, respectively, described by setting
amplitudes chosen correspond to three maxim&df(see  in Eq.(8) m*"=m/2, R*"=R/2 andm®"=m, R*"=R, wherem
Fig. 2 related to three different patterns of the particles’and R are the particle mass and radius, respectively. The
motion (see Fig. 3, each characterized by its oviNy,. The  parameteiy, appearing in Eq(7), accounts for the energy
maximal of these threeN,, values, namelyN,,=75, is losses during the collision, and, hence, it is related to the
achieved forA=0.66 corresponding to the first resonanceeffective restitution coefficienty. For a fixedAy, this res-
pattern. Increasing to 0.88(the half resonance pattgrre- titution coefficient depends on the relative velocity of collid-
sults in decreasindyl,, to 51, though the energy distribution ing particles.
between the rapidly and slowly moving particles changes in Using the above collisional model, the equations of mo-
favor of the slow movers. The curve in Fig. 6 fA=0.225  tion of the system may be described by the Newton second
demonstrates that the second resonance pattern providesad third laws. These may be expressed by the system of
larger number of fast particledN(,=55) than the half reso- N=100 second-order differential equations. For the numeri-
nance, notwithstanding that the vibrational amplitude iscal simulations presented below, we solved this system by
much larger in the half resonance pattern. the fourth-degree Runge-Kutta numerical integration

We calculated the numbels,, for other vibrational am- scheme. The time step was chosen small enough to not affect
plitudes and found that the maxima of the kinetic energythe results of the simulations.

E*, correlate with the maxima df,,,. Even a small increase Simulations were performed for the following fixed val-
of A from any of the values listed in Fig. 3 is accompaniedtleg ng ﬂc‘j‘:{_%aga“lg}‘gﬁ/m; %257 kg, IRZO']?OHE’"" v
by a dramatic decrease of bd#f (see Fig. 2andN,,. For =™ andy=9.8x m*. These values of the Young

example. a chanae froMi=0.66 to 0.68 leads to a drop in modulus and the Poisson ratio correspond to the real
p'e, ) - L P N material—brass. In order to mimic results of the hard-sphere
N, from 75 to 5. Such sharp changes indicate the emstenc& ulations, the following values oA, were used: A

of a resonance between the degrees of freedom associat _
with different particles. Each of these degrees of freedom is(;fgé?e (fti_vé'?:S'tgié’nagge?fﬁ%n{:es:eovgaguzsg%%”zsn%ogdggogthe
characterized by its owrA-dependent frequency. Hence, eff =2y M '

- : calculated for the two particles colliding with relative veloc-
variation of A can change these frequencies for some par: ; : :
9 9 b ity equal toJ2E,~2.68. HereE, is the dimensionless reso-

ticles, equalizing them, i.e., producing simultaneous oscilla- .
tions of the particles’ groups. Using such an explanation, wdrance energjsee Eq.(_6)] cal_culated for the first resonance.
The hard-sphere simulations were performed for sizeless

may call the patterns presented in Fig&)%1(c) resonance particles which apparently do not occupy any volume

oscillations ofNm =55, 7S, and 51 particles, respectively, out (length within the 1D tube. For the soft-sphere simulations
of the total of 100 patrticles. : S
particles have a certain size. In order to compare the results

of the simulations obtained by both collisional models, for
the soft collisional model simulations the total volume

The hard-sphere model is mathematically the simplestlength free from the particles within the tube was taken to
one. For real materials, however, the restitution coefficient ide equal to the tube length, for the hard-sphere collisional
not constant. Rather, it increases monotonically with deimodel simulations.
creasing relative velocity of colliding particlg$8]. This col- For the parameters chosen we repeated all simulations
lisional property, apparently disregarded by the hard-spherperformed for the hard-sphere model and observed the trends

B. Soft-sphere model
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" PN The nature of the velocity-dependent restitution coeffi-
o002 (0 908) X cient manifests itself in the disappearance of the clusters ob-
! TeTD06 (090 served for the hard-sphere model. In contrast to the latter

4 D=1.0 (e=0.99)

model, now trajectories of each particle are well distin-
guished. They fill practically all the phase volume in the
planex-t. The period of contact between the piston and col-
umn significantly increases, and reaches half of the vibra-
tional period. In order to get qualitative information about
the processes occurring within the column, we plotted in Fig.
9 the kinetic energy evolutiofFig. ¥a)] and the particles’
and piston’s trajectorield=ig. 9b)], respectively, during one
P T T T e o T T vibrational period. One can distinguish in Figga©and 9b)
imernts e 41 several characteristic stages of the system evolution. The
moments of time separating these stages are denoted by
FIG. 7. Kinetic energy vs vibrational amplitude for a column of a,b,c At the momenta the kinetic energy reaches its mini-
N= 100 softly colliding granules. mum [see Fig. 8a)] and the piston approaches its outstroke
. . position [see Fig. %)]. At the momentb the column de-
reported above. In particular, we found that the_t'me'taches from the pistofsee Fig. @)] and the energy reaches
averaged kinetic energy approaches a constant vBfie jts maximum[see Fig. @a)]. At the momentc the column
which depends on the two dimensionless parameters: vibrggain touches the piston moving to the outstroke position.
tional amplitude A and dissipative parameteD=N(1 Velocity distributions within the column for the moments
—eq). In Fig. 7, E” is shown versus the dimensionless vi- a,b,care depicted in Figs. 18—-10(c), respectively. One can
brational amplitude for sever@l<1. Each curve has several distinguish in Fig. 108) a shock wave pattern. About 20 first
global maxima. As for the hard-sphere model, each of thesparticles are involved in intensive relative motion by the
global maxima is associated with a resonance pattern. Exshock wave generated by the piston. The rest of the particles
amples of these resonance patterns are presented in Figge less agitated because the wave front has not yet reached
8(a)—8(d). Comparing these patterns with those depicted irthem. During the stage, between the momentndb, the
Fig. 3, one can see that they may be classified as the firgiiston, moving in the positive direction, pushes the shock
[Figs. §a) and 8b)] and half[Figs. §c) and §d)] resonance wave towards the plug. This shock wave compresses the col-
patterns. The second resonance pattern was not observed fonn of particles and increases their energy from 1.5[tge@
the soft-sphere model simulations. Fig. 9@]. We see in Fig. 1) that the whole layer is in-
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FIG. 8. Patterns of particles’ resonance oscillatigwdt collisional modelD =0.6,N=100). Piston moves sinusoidallyA=sin 27t: (a)
A=0.24,(b) A=0.4,(c) A=0.55, and(d) A=0.7.(a) and(b) First resonance patterfg) and(d) half resonance pattern.
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: such velocity distribution, caused by the expansion wave, the
column expands. After that, a new shock wave compresses
the column and the process repeats again.
. The results presented above of our computer simulations
of vibrated inelastic granular columns, performed for both
collisional models, have many common features, as follows.
L (i) For large enough vibrational amplitudes of the piston
the columns oscillate periodically with a period equal to the
vibrational period.
R (i) The maximal value of the kinetic energy of these

. granular systems driven by the external vibrations is propor-
' : ‘ ‘ tional to the square of the vibrational frequenay, and
(a) Time strongly depends on the vibrational amplitude in a nonmono-
tonic manner. The maximal values of the kinetic energy,
achievable by means of external vibrations, are of the order
of w?L?, wherelL is the total volume of the space within the
tube free of particles.

25

- /\MW

FIG. 9. Evolution of a column consisting ¢i=100 inelasti- R
cally colliding (soft collisional model granules during one vibra-
tional period forA=0.66,D=0.6. (a) Kinetic energy vs time, and 0 0 0 ) 0 5 & Q0 80 % 100
(b) particles and piston trajectories. (a) Fartle umter

Velocity
o

volved in the intensive relativéherma) motion at the end sl
of this stage. All particles move in the positive direction,
except the last particle, which is reflected from the plug.
There is a significant dispersion in velocities between the
particles, i.e., they are all fluidized.

During the detachment period lasting until the moment
the particles rapidly lose their energigee Fig. 9a)]. It is °
explained by the absence of interaction with the piston -
which does not supply energy to the column. The energy -}
losses are caused by a vast number of inelastic collision |
stipulated by significant dispersion of the particles’ veloci- . ‘
ties. These collisions are accompanied by rather complicate b " 10 » oW 0w LA o
wavy processes. Any detailed description of these processi
is far beyond the scope of the present paper and may be s
subject of a separate investigation. It is worth mentioning
that this stage terminates when an expansion wave is forme
An example of this wave is presented in Fig(d0The total
momentum of the column is negativmost of the particles °or
move towards the pistgnthough the relative particle veloci-
ties are still significant. A part of the kinetic energy of the
relative particle motion is lost through inelastic collisions.
The remaining part is distributed between the particles, ir "
such a way that a velocity gradient is created. Such a grad -
ent may be seen in Fig. 1€ within the part of the column 25
counting about the first 80 particles. Comparing the velocity
distributions of the last 80 particles presented in Figga)l0 o " i 0 oo @ o i w0 o
and 10c), we see that the intensive particle thermal motion e
terminates and the velocity distribution transforms into an FIG. 10. Particle velocity distribution within the column shown
almost monotonic one during the time perioda)0,Due to  in the Fig. 9: (@) t=a, (b) t=b, and(c) t=c.
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e collisional models, one can see that the jumps of the energy
between two groups of particles, registered for the hard-
sphere model, do not exist for the soft collisional model. In
that sense the energy distribution of the vibrated 1D granular
columns calculated for the soft collisional model matches
closer to the comparable property of the resonance oscilla-
tions of the granular gases based on the continuum approach
than do the results for the hard-sphere model. On the other
hand, we have seen above that the maximal value of the
kinetic energy predicted by the hydrodynamic model
matches closer to the results of the hard-sphere model simu-
lations.

These resonance oscillations of our 1D system have sev-
o o eral common features with those described by the hydrody-
FIG. 11. Kinetic energy distribution fdd = 0.6, N=100. namic model, discussed above. A more detailed comparison
between the models and the simulations is hardly possible

(iii ) The periodic oscillations of the granular columns cor-because of the following two reasons. The hydrodynamic
responding to the maximal values of the kinetic energy arénodel is restricted by the requirement of the smallness of the
governed by the shock waves. All the featuf@siii ) listed ~ Vvibrational amplitude. Therefore, significant errors may arise
above were shown in Sec. Il to prevail for resonance oscilin the description of the column oscillations under the action
lations also of three-dimensional granular gases, as predictédf large amplitude external excitations considered in our 1D
by the hydrodynamic model of the granular gasand (2). simulations. In particular, the hydrodynamic model fails to
Moreover, prediction of the maximal value of the kinetic treat the half resonance pattern corresponding to multiple
energy(6) calculated on the basis of the developed hydrody-éeflections of the shock wave from the walls, when the dis-
namic model is in good agreement with the computer simutance separating them becomes small enough. The second
lation results for the hard-sphere model. reason is the physical difference between a 1D system and

We also registered a number of differences in the resultgD and 3D systems. It is knowji21] that even the 1D col-
of soft- and hard-sphere model simulations. In particular, peumn of elastically colliding spheres oscillates in a manner
riods of piston-particle interactions for “soft” particles are different from that of the comparable 3D conservative gas.
considerably larger than those for “hard” ones. Another im- We hope that future comparison of CFD simulations with 2D
portant difference between these collisional models is in th&nd 3D physical and computational experiments will allow
energy distribution between the particles. In Fig. 11 the ki-us to assess the applicability of these and similar hydrody-
netic energy distribution for several amplitudes is presenteiamic models to vibrated granular systems.
for D=0.6. All curves are normalized in such a way that the
area below the curve is equal to 1. The amplitudes chosen
correspond to four maxima d&” for D=0.6 (see Fig. 7
related to the two different patterns of particle motion This research was supported by the Israel Science Foun-
(namely, first resonandd-igs. §a) and 8b)]| and half reso- dation, by the Center of Absorption in Science, and the Gil-
nance[Figs. §c) and &d)]). Comparing velocity distribu- liady Program for Immigrant Scientists Absorption by the
tions obtained for the softFig. 11) and hard{Fig. 6) sphere  Fund for the Promotion of Research at the Technion.
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